
Evaluation of the VSIPL++ Serial Specification Using the DADS Beamformer

Dennis Cottel and Randy Judd
SPAWAR Systems Center San Diego

Phone: 619-553-1645
Email Address: {dennis.cottel,randall.judd}@navy.mil

The High Performance Embedded Computing Software Initiative (HPEC-SI) Development
Working Group has been creating VSIPL++, a new software standard to promote portability,
productivity, and performance in embedded parallel systems. This standard expands the Vector
Signal Image Processing Library (VSIPL) to encompass parallel systems in C++. HPEC-SI has
contracted with CodeSourcery, LLC, to produce a VSIPL++ Reference Library. The Reference
Library is intended to allow early users to experiment with the functionality of VSIPL++.

This presentation discusses a project to evaluate the VSIPL++ specification by using the
CodeSourcery VSIPL++ Reference Library to implement a part of the current operational signal
processing code for the Deployable Autonomous Distributed System (DADS). The authors of
this presentation have extensive experience in developing and using the original VSIPL library,
working with parallel signal processing algorithms, and developing other HPC middleware and
standards. They have been involved with the development of the VSIPL++ standard, but are not
C++ programming experts. One aspect of this work will be to compare features and ease-of-use
of VSIPL and VSIPL++.

The Deployable Autonomous Distributed System (DADS) is an advanced development program,
sponsored by ONR-321, to demonstrate deployable autonomous undersea technology for
operations in coastal waters. The system consists of small acoustic arrays on the ocean floor
with embedded in-node signal processing. Detections are transmitted to the surface using
acoustic modems.

The current DADS acoustic beamforming software is written in ANSI C, is available in both
development and embedded configurations, and is unclassified. The code is sequential, but
future hardware and algorithm upgrades could require parallelization. Of several candidate
software modules, the beamformer was chosen as most appropriate for conversion to VSIPL++.
The DADS beamformer does either adaptive processing (using a minimum variance
distortionless response algorithm) or conventional beamforming. The beamformer source code
consists of about 1000 lines of non-blank, non-comment code.

The project established a test data set and an environment in which the current DADS
beamforming code could be executed. The code was then rewritten in C++ using the
CodeSourcery VSIPL++ Reference Library and the results of running the new code were
verified. Metrics were recorded on the time to develop the code and the resulting changes in
lines of code from the original version.

We will report on these metrics and other lessons learned. Of particular interest will be whether
addressing real-world algorithms exposes any functional problems or deficiencies of the
VSIPL++ specification that should be addressed by the HPEC-SI Working Group.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
01 FEB 2005

2. REPORT TYPE
N/A

3. DATES COVERED
 -

4. TITLE AND SUBTITLE
Evaluation of the VSIPL++ Serial Specification Using the DADS
Beamformer

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
SPAWAR Systems Center San Diego

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release, distribution unlimited

13. SUPPLEMENTARY NOTES
See also ADM00001742, HPEC-7 Volume 1, Proceedings of the Eighth Annual High Performance
Embedded Computing (HPEC) Workshops, 28-30 September 2004 Volume 1., The original document
contains color images.

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT

UU

18. NUMBER
OF PAGES

26

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Evaluation of the VSIPL++ Serial
Specification Using the DADS Beamformer

HPEC 2004
September 30, 2004

Dennis Cottel (dennis.cottel@navy.mil)
Randy Judd (randall.judd@navy.mil)
SPAWAR Systems Center San Diego

VSIPL++ Demonstration

HPEC 2004 — DADS and VSIPL++ 2

• HPEC-SI is moving VSIPL functionality to object
oriented programming and C++: VSIPL++

• Goal of this demonstration:
– Evaluate the draft VSIPL++ Serial Specification
– Identify both advantages and problems with the VSIPL++

methodology
– Suggest improvements

• Method
– Port a DoD acoustic beamformer algorithm written in

standard C to use VSIPL++ and C++
– Measure and Evaluate (when compared to baseline code)

HPEC 2004 — DADS and VSIPL++ 3

Deployable Autonomous Distributed
System (DADS)

• DADS Goals
– Develop and demonstrate deployable autonomous

undersea technology to improve the Navy’s
capability to conduct effective Anti-Submarine
Warfare and Intelligence-Surveillance-
Reconnaissance operations in shallow water

• Sponsor: ONR 321
http://www.onr.navy.mil/sci_tech/ocean/321_sensing/info_deploy.htm

DADS Concept

HPEC 2004 — DADS and VSIPL++ 4

• Sensors, Arrays & Sources
– Acoustic
– Electromagnetic

• Communication Links
– RF buoys & AUV gliders
– Acoustic modems

• In-Node Signal Processing
– Acoustic, passive & active
– Electromagnetic
– Sensor data fusion

• Master Node
– Network control
– Network data fusion

• Sensors, Arrays & Sources
– Acoustic
– Electromagnetic

• Communication Links
– RF buoys & AUV gliders
– Acoustic modems

• In-Node Signal Processing
– Acoustic, passive & active
– Electromagnetic
– Sensor data fusion

• Master Node
– Network control
– Network data fusion

DADS Beamformer

HPEC 2004 — DADS and VSIPL++ 5

• Signal processing program chosen for
conversion is DADS multi-mode beamformer
– Adaptive minimum variance distortionless

response

• Current software is …
– Sequential ANSI C
– About 1400 lines of C source code
– Pointer-ized -- no vectorization

Approach

HPEC 2004 — DADS and VSIPL++ 6

• Establish test data and environment to execute and
validate current code

• Analyze existing code and data structures
• Vectorize
• Rewrite module using VSIPL++
• Validate VSIPL++ version
• Report specification issues and code metrics

Used pre-release of CodeSourcery sequential
VSIPL++ reference implementation which in
turn uses the VSIPL reference implementation

Deliverables

HPEC 2004 — DADS and VSIPL++ 7

• Metrics
– SLOC
– Lines changed if appropriate
– Time to develop
– Others

• Report results and lessons learned
– HPEC-SI workshop
– DADS Annual Program Review for ONR, project

personnel, industrial partner (Undersea Sensor
Systems Inc.)

Initial Steps

HPEC 2004 — DADS and VSIPL++ 8

• Established testable code baseline
– Wrapped module in executable program
– Set up test data file and associated parameters
– Set up validation procedures

• Analyzed baseline code
– Figured out what algorithms were implemented
– Mapped program data flow

Data Flow Map

HPEC 2004 — DADS and VSIPL++ 9

buffer ntimes

nsen

gr
n

xdata

nsen

n

FFT

gi
n

covariance matrix
covr/covi
(complex)

nsen

nsen

executed nsen
times

executed
nfreq
times

split into real and
imaginary parts

fgr/fgi
(complex)

nsen

nfreq

nave

sr/si
nh

replicas

fr/fi
(complex)

nh

nang

nfreq

solve

wr/wi
nh

freq_series

n

nang

nave

mvprod

adaptive
weights

IFFT

sum beam
nang

wt
nh

*conventional
weights

time_series

n

nang

nave

Dual Implementations

HPEC 2004 — DADS and VSIPL++ 10

• Starting from scratch based on analysis of
original program
– Insight, trial approaches to sub-problems

• Incremental modification of original program
– Vectorization

• Un-pointerize
• Reorder tests within loops
• Recast loops into vector and matrix operations

– VSIPL++ -ization
– This version chosen for final solution and

metrics

Example of Typical Code

HPEC 2004 — DADS and VSIPL++ 11

frptr = fr; // pointer to replica buffer (real)

fiptr = fi; // pointer to replica buffer (imag)

for (ifreq = ibin1; ifreq <= ibin2; ifreq++)

// produce one row of the weight matrix at a time

for (iang = 0; iang < nang; iang++) // loop over bearings

for (i = 0; i < nh; i++) // copy a row of the replica

sr[i] = *frptr;

si[i] = *fiptr;

frptr++;

fiptr++;

for (i = 0; i < nh; i++) // loop over hydrophones

wr[i] = wt[i] * sr[i];

wi[i] = wt[i] * si[i];

for (int ifreq = ibin1; ifreq <= ibin2; ifreq++)

w = vsip::vmmul<0>(wt, replica.get_xy(ifreq-ibin1));

Code Metrics

HPEC 2004 — DADS and VSIPL++ 12

• Number of files increased from 8 to 14
• SLOC for all source files

– Counting semicolons:
• Baseline 887
• VSIPL++ 630 -29%

– Counting non-blank, non-comment lines:
• Baseline 1389
• VSIPL++ 1018 -27%

• Heart of the beamformer calculation (all lines):
• Baseline 410
• VSIPL++ 180 -56%

• Lines of code changed: Most!

Memory Size Metrics

HPEC 2004 — DADS and VSIPL++ 13

• Binary program sizes (statically linked):
HP-UX/PA-RISC Red Hat/Pentium__

– Baseline 560 KB 700 KB
– VSIPL++ 1,800 KB 3,900 KB

• Memory footprint and usage:
– Weren’t able to measure this
– VSIPL++ programs might be expected to use

larger structures
• For example, N vectors become a matrix

– For this program’s statically allocated structures
and arrays, it should be a wash

Test Cases

HPEC 2004 — DADS and VSIPL++ 14

• 14 input sensors,
108 output beams

• 14x14 covariance matrix
• Forward FFTs 14 x 2048
• Inverse FFTs 108 x 2048
• Larger data set

• More smaller objects
created, object creation
amortized over less
computing

• 64 input sensors, 64
output beams

• 64x64 covariance matrix
• Forward FFTs 64 x 1024
• Inverse FFTs 64 x 1024
• Smaller data set

• Fewer larger objects
created, more
computing per object

Execution Time Examples

HPEC 2004 — DADS and VSIPL++ 15

0

100

200

300

400

500

600

PA-R
IS

C

Pow
erP

C

Pen
tiu

m

PA-R
IS

C

Pow
erP

C

Pen
tiu

m

64 sensors, 64 beams 14 sensors, 108 beams

Ex
ec

ut
io

n
tim

e
(s

ec
on

ds
)

Baseline
VSIPL++

Profiling Results for PA-RISC

HPEC 2004 — DADS and VSIPL++ 16

64 sensors, 64 beams, 1024 point FFTs

0

10

20

30

40

50

60

70

80

90

100

Baseline VSIPL++

PA-RISC 8600, 550 MHz,
HP-UX 11.11, g++ 3.3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

14 sensors, 108 beams, 2048 point FFTs

0

100

200

300

400

500

600

Baseline VSIPL++

PA-RISC 8600, 550 MHz,
HP-UX 11.11, g++ 3.3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

Profiling Results for PowerPC

HPEC 2004 — DADS and VSIPL++ 17

64 sensors, 64 beams, 1024 point FFTs

0

10

20

30

40

50

60

70

80

90

Baseline VSIPL++

PowerPC, 1.25 GHz,
OS X 10.3.4, g++ 3.3

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

14 sensors, 108 beams, 2048 point FFTs

0

20

40

60

80

100

120

140

160

180

Baseline VSIPL++

PowerPC, 1.25 GHz,
OS X 10.3.4, g++ 3.3

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

Profiling Results for Pentium

HPEC 2004 — DADS and VSIPL++ 18

64 sensors, 64 beams, 1024 point FFTs

0

50

100

150

200

250

Baseline VSIPL++

Pentium, 450 MHz,
Red Hat 8.0, g++ 3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

14 sensors, 108 beams, 2048 point FFTs

0

50

100

150

200

250

300

350

Baseline VSIPL++

Pentium, 450 MHz,
Red Hat 8.0, g++ 3.2

se
co

nd
s

other
malloc/free
FFT
main
copy,get,put
other VSIPL
solve
decompose

Object Creation

HPEC 2004 — DADS and VSIPL++ 19

• Previous experience with VSIPL has shown
– Object creation in inner loops is inefficient
– Solution is early binding / late destroys

• VSIPL++ reference implementation uses
VSIPL library as its compute engine
– Observed similar inner-loop inefficiencies
– C++ new() called to create subviews of data

• A purely C++ VSIPL++ implementation
would avoid some of these problems

Overall Issues

HPEC 2004 — DADS and VSIPL++ 20

• Additional data copying a potential problem
– Improvements in reference library will remove

some of this

• Memory allocation
– A clever implementation might avoid much of this
– Proposal to improve specification so

implementation can avoid calls to C++ new() in
inner loops

• Binary program size for embedded systems

VSIPL++ Specification

HPEC 2004 — DADS and VSIPL++ 21

• Issues with specification
– I/O for data Fixed in final spec
– Row/Column major Fixed in final spec

• matrix layout in memory
– Real and Imaginary subviews Fixed in final spec
– Sticky subview variables with remapping

Proposed fix for final spec

• There were still limitations in the VSIPL++ reference
implementation we used
– Tensors
– Transpose views and operations

Ongoing VSIPL++ Questions

HPEC 2004 — DADS and VSIPL++ 22

• Knowing when data is copied and when it
isn’t and what we can do about it: there are
subtle C++ distinctions

• Continuing general concern about efficiency
• Use of bleeding-edge C++ features and

compiler compatibility

Our Contributions

HPEC 2004 — DADS and VSIPL++ 23

• Demonstrated that VSIPL++ can be used for
real DoD application code

• Close look at details improved specification
– Fixing inconsistencies and small errors
– Improving understandability of the spec

• Redesign of the FFT and multiple-FFT API

• Bug fixes in reference implementation
• Improvements to underlying VSIPL reference

library

Conclusions

HPEC 2004 — DADS and VSIPL++ 24

• VSIPL++ serial specification has the
functionality to implement a typical DoD
signal processing application

• Resulting code is more understandable and
maintainable

• VSIPL++ can deliver comparable performance

Evaluation of the VSIPL++ Serial
Specification Using the DADS Beamformer

HPEC 2004
September 30, 2004

Dennis Cottel (dennis.cottel@navy.mil)
Randy Judd (randall.judd@navy.mil)
SPAWAR Systems Center San Diego

	Evaluation of the VSIPL++ Serial Specification Using the DADS Beamformer
	Dennis Cottel and Randy Judd�SPAWAR Systems Center San Diego

	Presentation:
	Agenda:
	Abstract:

